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On the Lagrangian Description of Vorticity

J. Casey & P. M. NAGHDI

Communicated by D. OWEN

Abstract

This paper exploits a Lagrangian form of the vorticity field that is based on
a formuia of Beltrimi, the merits of which do not seem to have been fully appre-
ciated. A number >f new results are readily derived by using the Lagrangian de-
scription, and the classical vorticity theorems are also included. The results, being
purely kinematical, apply to all deformable media (including viscous fluids) and
may also be of value in computations.

1. Introduction

Although it has been rarely discussed, the Lagrangian description of vorticity
does offer some advantages over the conventional (Eulerian) description. Thus, for
example, TRUESDELL® has shown rhat the division of vorticity transport into con-
vective and diffusive mechanisms becomes especially transparent when a Lagran-
gian viewpoint is adopted. Furthermore, as will become apparent below, the treat-
ment of conditions for the materiality of vortex-lines in a deforming continuum
is particularly straightforward when phrased in Lagrangian terms. Because of
these and other reasons of a more general nature, it seems to us that a Lagrangian
description of vorticity should be more fully investigated than it has been.

Since the history of the subject is quite tangled, it is desirable to provide some
background information. In the context of classical hydrodynamics, CAUCHY
showed that under certain circumstances the current vorticity vector w at a fluid
particle could be explicitly written in terms of its initial value? w,°. One consequence

! See sect. 84 of TruesDELL'S monograph {1] and also an earlier paper by him [2].

1 See our eqn. (3.29), in which F signifies the deformation gradient tensor and J
is its determinant. CAUCHY's formula, presented in 1813, appears as eqns. (16) on p. 40
of [3]. As TauasoaLL has pointed out in Lis discussion [1, p. 173ff.], the significance
of Cauchy’s formula was not appreciated in the decades following its publication. A
notable exception is STOKES, who became increasingly aware of its importance (see [4,
p. 108] and [5)). A discussion of Cauchy’s formula is given in Lams {6, p. 205] and it is
treated also in SERRIN (7 p. 1521 TauespeLL & Tourin (8, p. 421), and BATCHELOR
9, p. 276].
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of Cauchy’s formula is that vortex-lines in a circulation-preserving flow are carried
as material lines. In contrast, in a more general motion, the vortex-lines no longer
move as material lines, and Cauchy's formula no longer holds. Nevertheless.
it is still possible to have an expression of the same form as Cauchy’s in order to
associate with the current vorticity field a time-dependent field w° defined on the
reference configuration of the continuum. To our knowledge, BELTRAMI [10)
was the first to give such a formula, and it appears to have gone unnoticed ever
since.® Beltrami's development is rather convoluted, but he definitely has a La-
grangian voruicity vector and ne aisu deduces a few of its properties. In the La-
grangian representation of vorticity which TRUESDELL presents in (1], Beltrami's
vorticity vector is not explicitly introduced, but a large number of results are
derived in Lagrangian form.* In the present paper, we employ Beltrami’s formula
as the cornerstone for the construction of the vorticity field in Lagrangian form.
The discussion is purely kinematical and rherefore applies to all deformable media
including, for example, viscoelastic and elastic-plastic materials, as well as viscous
fluids.

The contents of the paper are as follows. In Section 2, we briefly review the
Eulerian description of the vorticity field. It should be noted that in the Eulerian
description the curl of the acceleration is a relatively complicated function of
the vorticity in that it also involves the rate of deformation tensor (see (2.12)
and (2.9);.;). The Lagrangian representation, which is introduced in Section 3,
furnishes a relationship between acceleration and the vorticity that could not be
simpler: the curl of the acceleration is the material derivative of the (time-
dependent) Beltrami vorticity vector (see (3.19), and (3.17,)). Many theoretical
results follow directly from this, and it may also be of computational value. In
Section 4, Eulerian and Lagrangian representations for circulation are discussed.
and the time-evolution of vortex-tubes is analyzed. In Section 5, we present ne-
cessary and sufficient conditions for vortex-lines to be transported as material
lines. Also included in Sections 4 and 5 are the connections between the present
results and classical ones, especially the vorticity theorems of HeLmuoLTZ (11]
and KELvVIN [12].3

2. Preliminaries. Eulerian description

Consider a deformable continuum & moving in three-dimensional space and
let X be a typical particle of #. Also, let X and #, respectively, denote the position
occupied by X in a fixed reference configuration »° of # and in the present
configuration » at time ¢. The motion of 4@ is described by the mapping * = x(X, ¢).
The particle velocity v, deformation gradient F, determinant of F, and right

3 The formula is represented by eqns. (15) of [10]). These correspond to eqn. (3.2),
below, when written in its equivalent form Jo = Fw°,

4 Although TRUESDELL cites {10] in sect. 84 of [1], it seems that he overlooked the
value of Beltrami’s eqns. (15).

% Various statements and proofs of these theorems can be found in [1, 6, 7, 8, 9],
and the reader may also wish to consuit (13, Sect. I1.13] and [14, Sect. 1i]. A discussion
of the continuing usefulness of the classical results can be found in [15].
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Cauchy-Green measure of deformation are

J
t)'—‘.*:a—-z F—z

b2 = — FT
. F=:%. J=daF>0, C=FTF, @1

while the velocity gradient, rate of deformation tensor, and vorticity tensor are)
given by
‘v
sz'—x’ D=Lsym=&(L+L’)’ W——-Lakw:&(L—Lr) 2.2
We recall that
F=LF, Fil=—F'L J=JuD=Jdivv. (2.3)
The vorticity vector w and tensor W satisfy the relations
o= —eWl=curly, W= -}z, 2We=wxec, (2.42)

where ¢ is the permutation tensor and ¢ is an arbitrary vector. Relative to a fixed
orthonormal basis {e; i = I, 2, 3}, (2.4a), ;; have the representations

= —epu Wy = ey, Wy= —Yeumn, (2.4b)
w here the usual convention of summation over repeated indices has been employed,
and where (), = %—%. We observe that

Ww =0, Lo =Dw=Lw dive=0. 2.5)

A motion is irrotational at time ¢ if and only if cw, or equivalently W, vanishes at
time ¢ for each particle X of #.
The acceleration and its spatial gradient are

a=yv, A=§-§-=fﬁ"‘, (2.6)
and it is clear that
L=A—-L*=A—-D*—W?—DW — WD,
D=Ay,—D*— W), W=A,, —DW—WD, D
where the symmetr ¢ and skew parts of A are defined by formuae of the type (2.2); 5.

a
Recalling the formula® for the convected rate W of W and noting that W'W =
— W31 we have

A .
W=W+LW+WL=A,,. (2.8)

¢ See TruEsDELL & NotL (16, p. 97). Note that a tensor does not have to be objecrive
for a formula of the type (2.8) to apply.
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Just as with the skew tensor W, we may uniquely associate a vector » with the skew
part of the acceleration gradient. Thus,

v = —e[Agl] =curla, A, = —}ex. 2.9
Expressing v as a function of the spatial variable £ and ¢, one readily obtains
v
a=—€7-—wxu+igrad(v-v), 2.10)
and hence
fw ‘w .
s=-c:;-t-~.-curl(wxv)=—87+dw(w®v—v®w). .10

where © denotes the tensor product of vectors” and div (w ® v) = (w;v),, €.
Consequently, in view of (2.5),.4,

2 =w + wdivv — Dw. 2.12)
If, for an arbitrary vector u, one defines the Tw-esdell rate® of u by

‘ -
u=u+{trD)I—L}u, 2.13)
it then becomes clear that

=w. (2.14)

3. Lagrangian description
Recall that the adjugate F* of F satisfies the relations
* = J(F-)T, (Fa)x(Fb) = F*(axb), detF*=J2>0, (3.1
for any vectors a, b. We define time-dependent vectors w® and x° by?®
o’ = JF'e = ! {w}, 3.2
x° = ! {a}. 3.3)

As will quickly become evident from its properties, the vectoi w® provides a
Lagrangian description of vorticity. In component form, the relationships between

7 Recall that (a ®bc=ab-c for any vectors a, b, c.

% This terminology is introduced to reflect certain properties which the rate  has
in common with the Truesdell rate of an objective tensor (see Casey & NagHDI {17,
p- 357).

® The operation x~' is known as a Piola rransformation. Operations of this type com-
monly appear in transformation formulae connecting Lagraagian and Eulerian descrip-
tions of fields (e.g., the stress field). The vorticity vector w° (actually, 4 w®) was intro-
duced by BeLTrRami (10], who used a procedure somewhat different from that given
here.
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»’ and w are
on = JXA"O)‘, w; = 7x,'4w4°, (3.4)

where w,° are the components of w° relative to a fixed orthonormal basis E,

(which may or may not coincide with e,). Similar equations hoid between the
components «; and x,°.

Observing the identity,

VX4 )a=0, or DivF*=0, 3.5)
we deduce from (3.4), that
Divaw® = wA'AC’ = JXA',‘(U,.A = Jdivw. (36)
Hence, in view of (2.5),,
Divew’ = 0. 3.7
Letting
WwW° = -3 ew®, (3.8)

we note that formulae of the type (2.4a), (and (2.5), also hold for W°and w°.
For any vector ¢, we have

1 1
wxc = (TFuf) xF(F-'¢) = 7F‘(w°x(F" <)), 3.9
where use has been made of (3.2), and (3.1),. Then, applying (2.4a), and its ana-
logue for the Lagrangian quantities, and invoking (3.1),, we find that

W° = FTWF. (3.10)
We also observe that irrotational motions are characterized by the vanishing of
w’ (or equivalently, W°).

In anticipation of later results, we transform the velocity and acceleration
fields by means of the formulae!®

v°=FTy, a°=FTa, 3.1
and also let
0 & . ¢a°
L =3x’ A =3X" (3.12)

It can then be easily verified that
L’ = FTLF + xl,AjleA (o] E.,
‘Ao = FTAF + x,:.a,BA ® E., (313)
v4° =040 + 4,
Lis® = (047).0 = 004s% + 04V + Aus’

19 It is worth pointing out that the transformation (3.11), could have been introduced
prior to (3.2):. The connection between these two fields will appear in (3.15)s.
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Breaking L° and A° in (3.13),; into their symmetric and skew-symmetric parts,

we obtain

L,y,.,.° = FTDF - xi.ABviEA ® EB’ L,k'O = FTWF = Wo,
s 3.14
A:ym = FrAsymF + xl,ADalEA ® Elr Askw° = FrAska' ( )

where use has een made of (2.2);  and equations of the type (2.2); s and of (3.10).
It follows from (3.11),, (2.2)y2.4, (3.14),, and a formula of the type (2.4b),
that

Curl v° = e1x0x,, E; = g150%1x%; ;W ,E;
= &,k Wr, E, (3.15)
=w’,
Hence, in view of (2.4a), and (3.2),,
Curl v° = 2! {curl v}. (3.16)
Likewise,
Curl @° = a° = x~! {curl a}. CRY))

Next, we deduce from (3.13), that

o
ersx(Vx°).; = E1sxVixsV + €xVi Uik + E1sx0k.5°

\ (3.18a)
= Eryx@K.J »
or
Curl v° = Curl a°. (3.18b)
It follows from (3.15),, (3.18b), (3.17),, (3.3), and (2.14) that
W =3 = 2w}, W°=Au"° (3.19)

where a formula of the type (2.9); has been used in the last step.

Suppose that at some time ¢ = t,, the body occupies its reference configura-
tion. Let the corresponding value of w° (and, hence, also that of w) bewy,®. It then
follows from (3.19), and (3.2), that the vorticity vector w at time ¢ can be written
asl 1

)

1
w = 7F woo - f \So df . (320)
te

The d’Alembert-Euler condition. The condition that
a=0 3.21

1 TauespeLt [1, Sect. 85] obtained (3.20) by another method and called it the “*basic
vorticity formula”. He interpreted it as representing the convection and diffusion of
vorticity, through the first and second terms, respectively, on its right-hand side. In this
connection, see alsc (2]
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for each particle and for all 1, is called the d’Alembert-Euler condition.!? In view
of (3.3), (2.14), (2.9)y,, and (3.14),, each of the following conditions is equivalent
to (3.21):

=0, w=0 A, =0 A, °=0. (3.22)

It is then obvious from (3.19), that the d’Alembert-Euler condition is met if and
only if the time-dependent vector w°® retains the value wy’ which it had at time ¢,
ie.,

w’ =wy’, (3.23)
and equivalently if and only if

W° = WQQ, (324)

i.e., the value of W° at r = t,. Furthermore, it follows from (3.2), and (3.23)
that a necessary and sufficient condition for (3.21) to hold is that

Jw = F(-Uoo. (325)

Equation (3.25) is Cauchy's vorticity formula. It is essential to obser=e the following
difference between (3.25) and (3.2),: in the former wy° is a time-independent
vector, whereas in the latter «w”® is, in general, time-dependent.

An important well-known result (The Lagrange-Cauchy theorem) can be im-
mediately deduced from (3.25): Suppose that the d’Alembert-Euler condition is
satisfied. If a motion is irrotational at any one time, then it is irrotational for all
time. For. if w(t*)=0 for some given instant ¢*, then, by virtue of (3.25), wy,° = 0.
Hence. again invoking (3.25), we find that () = 0 for all .

4. Circulation: Eulerian and Lagrangian Forms

Consider a simple ciosed curve €, which we shall refer to as a circuit, in the
present configuration », and let €° denote its inverse image (also a circuit) in the
reference configuration »°. The circulation around € has the representations

I = I, t)=jv~ds=([ v° - dX = [(€°. 1), @.1
where (3.11), has been used. Applying Stokes’s theorem to (4.1),;, and recalling
(2.4a); and (3.15),, we obtain

I"=Jw-rlda=’[w°-NdA, 4.2)

where & is any surface bounded by ¢, 1 is a unit normal to & (chosen to be com-
patible with the orientation of €), &° is the inverse imageof ¥ in »°, and Nis a
unit normal to ¥°. It is clear from (4.2), that a motion is irrotational at time ¢
ifand onlyif I" = O for every reducible’? circuit ¢ that can be drawn in the present

13 See TruesoeLL {1, p. 87).
13 ;e., one that can be continuously shrunk to a point of the present configuration
while remaining throughout in this configuration.
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configuration of the continuum (Kelvin's Kinematical Theorem). A similar statement
involving €° follows from (4.2),.

If we now fix attention on the particles that compose €°. then clearly a material
curve is described as time progresses and its image in » is ‘€. The rate of change
of I for this fixed set of particles is given by

,_ar
[=7@0= [a-ds= [a-aX, @3

where (3.1); has been used in deriving the last step.
Again, applying Stokes’s theorem to the integrals in (4.3), 4 and recalling (2.9},,
(2.14), (3.17),, and (3.19),, we find that

. ¢
r= ‘nda= ‘nda = °-NdA = 0 NdA. .
Ja yfwn J’ d jw dA (4.4)

A motion is circulation-preserving if and only if I" = 0, for all ¢, and for every
reducible circuit $° that can be drawn in the reference configuration of the con-
tinuum. It is obvious from (4.4), and (3.21) that a motion is circulation-preserving
if and only if the d’Alembert-Euler condition is satisfied (I, Sect. 46].

For w =0, a vortex-line in the present configuration is a line which is every-
where tangent to the vector w; it may be called an w-line. It passes through
a tefini*e set of particles!* in the configuration x at time ¢. Correspondingly, since
dX =- F-' ds, itis clear from (3.2); that the line joining this same set of particles
in 2° is tangent to the vorticity vector w°, so that it is an w®-line.

In the present c-.nrignration, draw any reducible circuit € whose tangent at
every point ic ; ot I -"a: ~. to e vorticity vector at that point. The w-lines passing
through € ther Jorr: a vortex-tube!® in a; let us call it an w-tube. Transport-
ing uus tube back into »°, we obtain an w°-tube there (Figure 1).

Let w(>0) and w’(> 0) be the magnitudes of w and w®, respectively.
and write

w=om o’°=o0°m°. (4.9
Recall the formuiae
im =Fm° i?*=m°-Cm°, (4.6)

where 4 > 0 is the stretch of a line-element lying along the unit vector m° in »°
and where use has been made of (2.1),.'¢ It follows from (3.2),, (4.5); ;, and (4.6),

14 Of course, a moment later, the vortex-line and the line through the particies wiil in
general no longer be identical J.e., the vortex-lines are not, in general, material lines.
Nevertheless, the above construction is useful. Conditions under which the vortex-lines
are material will be established in Sect. 5.

13 Several slightly different definitions of a vortex-tube have been given in the litera-
ture. The circuit is sometimes taken to be infinitely small (as in HximHOLTZ'S [11] Original
definition and also in Lams [6]). Reducibility is often only implicit, and ocxasionally not
made part of the definition at all (see MEYER (18]). Here, we have adopted the definition
given in BaTcHELOR [9].

'* The sal2r function 4 is a2 function of the variables (X, ¢, m®) in its Lagrangian
representation and a function of (%, ¢, m) in its Eulerian representation.
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Fig. 1. Lagrangian and Eulerian vortex-tubes

that

Ao 4
w=-Fw. 4.7

As indicated in Figure 1, let #°, . be tube sections bounded by circuits €°,
. respectively, and let N, n be unit normals vector fields to these surfaces !”.
Then, remembering that

yn = F*N, (4.8)

where v (= da/dA4) is the area-stretch, and again using (3.2),, we have
w-n=7w°-N. 4.9)

Let a volume element dV in »° be constructed with its base d4 on the section
&°. and with its sides of length dL composed of w°-lines. With these notations,
dV = dL d4 m® - N, and its image in » is the volume element dv = d/dam - n.
Since dv = JdV, it is then clear that

J
m-n=—m"-N. (4.10)
AY
If &¥° is a normal cross-section (N = m®) of the w°-tube element, then m - n
= Jidy.

Using (2.5), and applying the divergence theorem to a region in the present con-
figuration bounded by an w-tube and two cross-seciions & and &, we obtain

Heimboltz’s First Vorticity Theorem.
J‘w-nda= [w-nda, (419
k74

" The typeface in the figures differs somewhat from that in the text.
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i.e., the strength of an w-tube is the same at all cross-sections of the tube at
time t {6].
Equivalently, in view of (4.2);, we have Kelvin’s form of this theorem'?®:

(4, 1) = I¥,1), (4.12)

where the circuit € is the boundary of the section 5°. It is clear that the theorem
also holds for w’-tubes:

Jw°-NdA= "w® - Ndd, '@ 1) = I'(€°1). (4.13)
. P

In addition, it should be observed that since the vector fields » and x° also are
divergence-free, Helmholtz's First Theorem ajso holds when expressed with reference
to tubes of these vector fields.

As was mentioned previously, vortex-tubes are not, in ger eral, material tubes.
Consider, for instance, the set of particles that lic on an w-tube at time ¢ (Figure 2).
Then, at some later time ¢’, the particles which were on the curves €(¢) and <(-”(t)
will now lie on curves €(¢') and 5’(:’). and the particles on the tube MNPQ will be
deformed into the tube M’'N'P'Q’. However, at time t’, the vortex-tube through
#(t") could be M’'N’P"’Q" rather than M’N'P'Q’, and the vortex-tube through
€(1") could be P'O'M"N".

Fig. 2. The particies which lie on a vortex-tube MNPQ at time ¢ do not in general {:2
on a vortex tube at & subsequent time 7',

We now proceed to examine the rate at which vortex-lines change for a given
particle. To this end, we first take the material derivative of (4.6), and employ
(2.3), and (2.5), to obtain

im + im = ADm +~ Fm°. (4.14)

18 See KELVIN [12]. For historical comments. see TRUESDELL (1]
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Since m is a unit vector, it follows from (4.14) that

i m° - Cm°
=M Dbm At e
: | 4.15)
rh={o - (m-Dm + Fm°~Cn'ao) I}m+TF""°’
where use has been made of (2.1); and (4.6), ;.
By virtue of (4.7),
o o° _ A J
% @ AT (4.16)
Also, in view of (4.5),, (2.14), and (2.13),
5 = om + om “.17
and hence, by (3.3),
2° = wx'{m} + ox! {n':}. 4.18)
It then follows from (4.18) that
. -
D ot ) = -o_(ﬁ_‘i) o
w® x {m} =m W w® m-, (419)
where (3.19),, (4.5);, (4.6),, and (4.7) have been utilized.
S. Material vortex-lines
A vector-field u is material if and only if
u(s, t) = Fu°(X), (5.1

where u(s, t) is the value of u at a point ¥ in the present configuration, and u°
is the value of u at X in the reference configuration, the vectors s and X being
related through the motion x of the continuum. We emphasize that u° in (5.1) is
independent of time.

It is obvious from (5.1) and (2.3), that if u is material, then

4 = Lu. (52)

Let us now consider (2.12); it is clear that in general the vorticity field is not ma-
terial. (But, in the special case in which the motion is isochoric (/ = 1) and the
d’Alembert-Euler condition (3.21) is met, it can be seen from (3.25) that the vor-
ticity field is material.) Of wider significance is the case in which only the vortex-
lines are material.
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Theorem 1. Suppose w == 0. Each of the following conditions (a), (b), (c), (d) is
necessary and sufficient for the w-lines to be material:

(a) 'ho = 0: (C) = awoy

| &

S

(5.3)

[}
e-

‘ 0 o °
® m=-(2-Ym @ s=s=Za.
Proof. First observe that the four conditions in (5.3) are all equivalent to one an-
other. Thus, by (4.19), (4.6),, and (4.7), condition (5.3a) is equivalent to condition
(5.3b). Utilizing (4.5); and (3.19),, we see that conditions (5.3a) and (5.3¢c) are
equivalent to each other. Finally, by using the transformations (3.2), and (3.3)
and their inverses, we can establish the equivalency of (5.3c) and (5.3d).

(i) Necessity. By the definition (5.1), the vector m° in (4.6), must be independent
of time. Therefore, condition (5.3a) holds. Hence also do (5.3b), (5.3¢), and
(5.3d).

(ii) Sufficiency. If condition (5.3a) holds, then

o o

m’ = m,°, (5.4)
a time-independent unit vector. Substituting (5.4) into (4.6),, we obtain
Aim = Fm,°, (5.9

which implies that the w-lines are material. Since we have already shown that each
of the conditions (5.3b), (5.3¢), and (5.3d) is equivalent to (5.3a), they also must
individually imply (5.5).

Corollary I (Helmholtz’s Second Vorticity Theorem). If the d’ Alembert-Euler con-
dition is satisfied, the vortex-lines are material lines.

An equivalent statement is: If the motion is circulation-preserving, the vortex-
lines are material lines. To prove the corollary, simply observe that (3.22), is
equivalent to the d’Alembert-Euler condition, and consequently, in view of (3.19),
and (4.5);, m° = 0. Therefore, condition (5.3a) is satisfied, and the resuit follows
from the theorem.

It is of interest to note that in the present case (i.e., when a° = 0), (5.3b)
yields

' )
m=—zm. (5.9)

Corollary II (Helmboltz’s Third Vorticity Theorem). If the d’ Alembert-Euler con-
dition is satisfied, a time-independent strength can be associated with each vortex-tube.

Equivalently, we may replace the hypothesis of this corollary with the hypo-
thesis that the motion be circulation-preserving. The proof is straightforward:
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Helmbholtz’s Second Theorem implies that the vortex-tubes are material, and (4.4),
now tells us that I" = 0. Therefore, in view of (4.1),,

= [%°). (5.7

Hence, recailing Helmholtz’s First Theorem, we see that a time-independent
strength can be associated with each vortex-tube.

The upshot of the three Helmhoitz Theorems is that if the d’Alembert-Euler
condition is satisfied, then each vortex-tube moves as a material surface, and with
it is associated a scalar measure I” which varies neither along the tube ata given
value of 1, nor as a function of ¢ for a given tube. Thus, once the d’Alembert-
Euler condition is satisfied, I" is a con-?ant for each vortex-tube.

Corollary IIl. If the w-lines are material and if
0’ =0, (5.8)

then the d’Alembert-Euler condition is satisfied.
This follows immediately from (5.3a), (4.5);, (3.19),, and (3.22),.

Corollary IV. In a circulation-preserving flow, no stretching of vortex-lines occurs
if and only if Jw is time-independent.'®

In a circulation-preserving flow, a =0, and hence by (3.23), ®° = w,".
Also, the vortex-lines are material by Corollary I. Setting 4 = 1 in (4.7), we then
see that Jw = wy°, which is time-independent.

Theorem L. Suppose w <= 0. Each of the following conditions (a), (b), (c), (d)
is necessary and sufficient for the c-lines to be material:

(a) m’xm°=0, b)) w’xw® =0,
) (5.9)
() wxx =0, (d) mxm=20.
Proof. It follows from (3.2),, (3.3), and (3.1), ; that
1
wxas =-7(F“)T(w°xa°). (5.10)

Therefore, w x 3 = 0 if and only if w®xa° = 0. By virtue of (3.19), and (4.5),,
the latter can occur if and oaly if m°x m° = 0, which can occur if, and (since
m® is a unit vector) only if, m° = 0. Also, in view of (4.17) and (4.5);, o xa =0

if and only if mx m = 0. Consequently, each of the conditions in (5.9) is equi-
valent to (5.3a), which is a necessary and sufficient condition for the w-lines to be
material. ?°

1% [t, p. 180].
20 The condition (5.9¢) is given by TRuUEsDELL [1, Sect. 45], who employs a different
argument.
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